18 research outputs found

    Spin and orbital magnetic moments of molecular beam epitaxy γ′-Fe4N films on LaAlO3(001) and MgO(001) substrates by x-ray magnetic circular dichroism

    Get PDF
    10-nm-thick γ′-Fe4N films were grown epitaxially on LaAlO3(001) and MgO(001) substrates by molecular beam epitaxy using solid Fe and a radio-frequency NH3 plasma. The lattice mismatch of these substrates to γ′-Fe4N is 0% and 11%, respectively. Spin and orbital magnetic moments of these γ′-Fe4N epitaxial films were deduced by x-ray magnetic circular dichroism measurements at 300 K. The total magnetic moments are almost the same for the two substrates, that is, 2.44±0.06 μB and 2.47±0.06 μB, respectively. These values are very close to those predicted theoretically, and distinctively larger than that for α-Fe

    Investigation of potential cognition factors correlated to fire evacuation

    Get PDF
    The design of a navigation system to support indoor fire evacuation depends not only on speed but also a relatively thorough consideration of the cognition factors. This study has investigated potential cognition factors which can affect the human behaviours and decision making during fire evacuation by taking a survey among indoor occupants in age of 20s under designed virtual scenarios. It mainly focuses on two aspects of Fire Responses Performances (FRP), i.e. indoor familiarity (spatial cognition) and psychological stress (situ-ated cognition). The collected results have shown that these cognition factors can be affected by gender and user height and they are correlated with each other in certain ways. It has also investigated users‟ attitudes to the navigation services under risky and non-risky conditions. The collected answers are also found to be correlated with the selected FRP factors. These findings may help to further design of personalized indoor navigation support for fire evacuation

    Maze Solving Using Fatty Acid Chemistry

    Get PDF
    This study demonstrates that the Marangoni flow in a channel network can solve maze problems such as exploring and visualizing the shortest path and finding all possible solutions in a parallel fashion. The Marangoni flow is generated by the pH gradient in a maze filled with an alkaline solution of a fatty acid by introducing a hydrogel block soaked with an acid at the exit. The pH gradient changes the protonation rate of fatty acid molecules, which translates into the surface tension gradient at the liquid–air interface through the maze. Fluid flow maintained by the surface tension gradient (Marangoni flow) can drag water-soluble dye particles toward low pH (exit) at the liquid–air interface. Dye particles placed at the entrance of the maze dissolve during this motion, thus exhibiting and finding the shortest path and all possible paths in a maze

    Reduction of carrier concentrations of β-FeSi2 films by atomic hydrogen-assisted molecular beam epitaxy

    Get PDF
    AbstractWe have grown intentionally undoped β-FeSi2 thin films on Si(111) substrates by atomic hydrogen-assisted molecular beam epitaxy. The conductivity of β-FeSi2 films changed from p to n-type, and the carrier concentration decreased drastically from the order of 1019 to that of 1016cm−3. These results show that the atomic hydrogen played an important role to decrease the number of Si vacancies acting as acceptors

    Molecular beam epitaxy of <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mi>β</mml:mi></mml:math>-<mml:math altimg="si2.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msub><mml:mrow><mml:mstyle mathvariant="normal"><mml:mi>FeSi</mml:mi></mml:mstyle></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math> films on Si(111) substrates and its influence on minority-carrier diffusion length of Si measured by EBIC

    No full text

    Spin and orbital magnetic moments of molecular beam epitaxy γ′-Fe4N films on LaAlO3(001) and MgO(001) substrates by x-ray magnetic circular dichroism

    Get PDF
    10-nm-thick γ′-Fe4N films were grown epitaxially on LaAlO_3(001) and MgO(001) substrates by molecular beam epitaxy using solid Fe and a radio-frequency NH_3 plasma. The lattice mismatch of these substrates to γ′-Fe_4N is 0% and 11%, respectively. Spin and orbital magnetic moments of these γ′-Fe_4N epitaxial films were deduced by x-ray magnetic circular dichroism measurements at 300 K. The total magnetic moments are almost the same for the two substrates, that is, 2.44±0.06 μ_B and 2.47±0.06 μ_B, respectively. These values are very close to those predicted theoretically, and distinctively larger than that for α-Fe

    In-situ

    No full text
    corecore